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Enlarging the set of tree functions to include those which depend on the 
momentum vector has the effect of introducing new families and subfamilies of 
functions. Four auxiliary conditions are used in the generation of these functions. 
These auxiliary conditions introduce, as eigenvalues, four parameters in terms of 
which the coefficients of the momentum-dependent functions can then be 
expressed as linear combinations of the 16 leading coefficients. These 16 are all 
rest-system coefficients. Thus the momentum-dependent part of the expansion is 
expressible in terms of the rest-system portion, using only these four parameters. 

1. I N T R O D U C T I O N  

The earlier articles in this set (Clapp et al., 1980, 1979, and 1981), 
which will be referred to here as I, II, and III ,  in t roduced notation,  
equations, and_expansion functions for the trilocal system. The functions 
defined in I I  and III ,  however, were specialized to the rest system and did 
not  involve the m o m e n t u m  vector k. The full Hami l tonian  includes terms 
depending on k, included for example in the grouping H~ in (III.2.11b), t 
and this " m o m e n t u m  Hami l ton ian"  will introduce momen tum-dependen t  
expansion functions when it acts upon  any of  the momentum- independen t  
functions in II  or in III .  

In  particular, operat ion by  H k upon  the tree functions in I I I  will 
generate momen tum-dependen t  tree functions, each with a factor  Jm, n 

containing the "radial"  dependence.  These functions group into families, as 
will be evident f rom the following sections. 

1Equations from the earlier articles are cited with the paper number preceding the equation 
number. 
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Three new auxiliary operators will be introduced, each involving the 
momentum k and one or both of the relative gradient vectors, Vr and Vp. 
Requiring that these new operators be conserved will permit the coefficients 
of the momentum-dependent functions to be expressed as linear combina- 
tions of the first 16 ~ ,  through formulas similar to those given in Appendix 
E of III. 

In the articles to follow this one, the interconnecting relationships will 
be used to reduce an infinite system of coupled linear equations to a finite 
system in which the matrix elements are functions of the eigenvalues of 
these conserved operators. The finite system has an equally finite set of 
discrete solutions, whose masses are to be compared with the observed 
lepton masses. 

But that is for the articles to follow. The present article has the 
sufficiently large chore of sorting out the momentum-dependent tree func- 
tions. 

2. SPIN FUNCTIONS 

For the rest system, there are 16 o-spin functions that enter into the 
function expansions. These 16 were listed in (II.4.1) and are given again 
here: 

2b(1 ) 2r ) 2b(r ) 2C(r ) 2b(10)  2r 4(r ) 4(10) 

2b(irX10) 2C(irX10) 4(irX10) 4(rr) 4(100) 

4(rp +10 r ) 4(irrXp) 4(ipr X p) (1) 

These are mnemonics for functions which are given explicitly in Clapp 
(1961). As can be seen from the notation above, they include two 2S 
functions, four 2p functions of odd parity, two 4p functions of odd parity, 
two 2p functions of even parity, one 4p function of even parity, three 40 
functions Of even parity, and two 4D functions of odd parity. There are 
altogether eight a-spin functions of even parity in this fist, and eight o-spin 
functions of odd parity. 

When the operator Hk, defined by 

H k = ( 1 / 9 ) ( o ~ . k - 3 p ~ o b . k + o ~ . k )  (2) 

acts upon expansion functions containing these o-spin functions, and acts 
again upon the resulting functions, 18 more o-spin functions are generated. 
Each of these involves the vector k, either linearly or quadratically. The 
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mnemonics chosen for these eighteen are 

2b(k) 2C(k) 4(k) 2b(ikXr) 2~(ikXr) 2b(ikXp) 

2C(ikXp) 4(ikXr) 4(ikXp) 4(kk) 4(kr+rk) 4(kp+pk) 

4(ikrXp) 4(irk XpH- ipkX r) 4(irkXr) 4(ipkXp) 

4(ikkXr) 4(ikk Xio) (3) 

The explicit functions, for most of these 18, can be obtained from functions 
in (1) through simple substitution of one vector for another. Two only, of 
those in (3), need special attention here. One of these, 4(ikr• has the 
explicit components 

4(i kl. X 1o) ~/~2 : 

- ( k ~ z - k . r / 2 ) ( p x  - ipy)+(k~p~ - k . p / 2 ) ( x - i y )  

i[ kz( xpy -- ypx) - -k ' r  • p/3] 
i[kz(xpy - y & ) - k .  r X p/3] 
i[ kz( xpy - y o x ) - k . r  X p/3] 

- (  k ~ z - k . r / 2 ) (  p x + ipy ) + ( k~p~ - k .  p /2)(  x + iy ) 
- ( k z z - k . r / 2 ) ( p ~  +ipy)+(k~p~ - k . p / 2 ) ( x  +iy) 
--( k ~ z - k . r / 2 ) ( p ~  + iOy)+( k~o~ - k ' p / 2 ) ( x  + iyl 

(k x +iky)(X+iy)p~ - ( k  x q-iky)z(p x q-ipy) 

(k~ - i k y ) (X -  iy)pz - (k~ - iky)z(ox - ipy) 

( k z z - - k . r / 2 ) ( p  x - i p y ) - ( k ~ p  z - k . p / 2 ) ( x - i y )  
( k ~ z -  k . r /Z ) (p  x - ioy) - (k~& - k . o / 2 ) ( x -  iy) 
( k ~ z - k . r / 2 ) ( p ~  - i p y ) - (  k~o~ - k . p / Z ) ( x - i y )  

- i[ kz(xpy -YPx) - k.  r X p/3] 
- i[ kz( xpy - - y p x ) - k ' r  Xp /3 ]  
- i[ k z( xOy - yOx) - - k ' r  X p/3]  

( k z z - k . r / 2 ) ( p x  + ipy ) - (  kzp ~ - k . p / 2 ) ( x  + iy) 

(4a) 

4 ( i k r X p ) ~ / 2  = (4b) 

The expficit components for the other, 4 ( i r k X p + i p k X r ) ,  can be obtained 
directly from permuted versions of (4). There is no third such function, as a 
result of the easily verified identity 

4( i k r X p  )-F 4( irp X k  )-F 4( i p k X r ) = O  (5) 
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The choice of two combinations of these three, as the independent functions 
to be used, is of course arbitrary. Considerations of symmetry were 
paramount, in the actual choices that have been made here. One of the 
chosen functions changes sign when r and p are interchanged, while the 
other remains unchanged. 

Of the 18 o-spin functions listed in (3), only 16 are truly independent. 
This follows from two further identities, less obvious than (5) but neverthe- 
less readily verified. These identities are 

4(irr X p)(k- p ) -  4(ipr X p)(k. r) - 4 ( i r k X p + i p k X r ) ( r - p )  

+ 4 ( i r k X  r)p 2 q - 4 ( i o k ) < p ) r 2  = 0  (6) 

4 ( r p  -~- p r)[(k �9 r)(k- p) - -  (r. p)k 2] _ a(rr)[( k . p )2 _ k 2p2 ] 

__ 4( iO P )[(k- F) 2 -- k 2r 2 ] _~_ 4(k r _~_ rk)[(k,  i O )(r .  i0) - (k- 002 ] 

+4(kp+pk)[(k.r)(r.p)-(k.p)r2l-4(kk)[(r.p)2 - r 2 p  2] = 0  (7) 

These identities reduce the functions in (3) to eight independent functions of 
even parity and eight independent functions of odd parity, the same count 
as in the rest-system set in (1). 

It is not very convenient to attempt to remove two of the functions in 
(3), since (6) and (7) are not easily solved for an individual function in terms 
of other functions. Accordingly, all 18 of the o-spin functions in (3) will be 
used in the construction of expansion functions, but when the combinations 
(6) and (7) arise, it will be remembered that they are identically zero. 

With this cautionary note, we can proceed to construct momentum- 
dependent tree functions. The o-spin functions that are contained will come 
from the lists in (1) and (3). There will be z-spin functions in each expansion 
function, but no new z-spin functions are introduced by the operator H k in 
(2), so that the z-spin functions that will appear are just (+)"  and ( - )~ ,  as 
defined in (III.2.2). 

3. AUXILIARY OPERATORS 

The auxiliary operator P*(Vr" Vp) was introduced earlier through the 
operator equation (III.3.1), given again here as 

e ( Zr �9 - -  ( 8 )  

This auxiliary condition also introduces the eigenvalue p, which was earlier 
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of use in providing expressions for the coefficients of the rest-system 
expansion functions, as shown in Appendices E and F of III. 

The generalization to momentum-dependent functions opens the way 
to the introduction of two similar operator equations: 

(ik-Vr)f~J-~-kls (9) 

P ' ( ik"  V o )6p = k%v"~ (10) 

These are auxiliary conditions that introduce the eigenvalues v' and v", 
analogous to v to some degree. 

It is found that the operators in (9) and (10) have matrix representa- 
tions which are symmetrical, when the function system is developed in such 
a way that the momentum Hamiltonian H~ in (2) has a symmetrical matrix 
representation. The operator H k couples across families, while the operators 
(8)-(10) are more restrictive, coupling functions which are within limited 
families. The latter operators are thus particularly useful in developing the 
sets of functions which are denoted as families, and in providing reduction 
formulas permitting their coefficients to be expressed simply in terms of a 
limited, finite number of leading coefficients, belonging to a similarly 
limited number of leading functions in the separate families. 

There is also another auxiliary operator of particular value, which 
satisfies the operator equation 

P " ( i k . V r X Vp)(I  )~--~- - -  k ls r ls p'y f~ (11) 

The matrix representation of this operator is not symmetric, but is skew 
symmetric. This is important in practical utilization of (11), but does not 
diminish the utility of the auxiliary condition (11) in any way. Its value 
comes from the coupling which it provides between families which are not 
coupled by the simpler operators in (8)-(10). 

The square of the operator in (11) can be expressed as a function of the 
operators in (8)-(10). For this we can use the vector identity 

(A. B • C) = = 2 (A. B)(B. C)(C. A) - A  2 (B- C) 2 -  B 2(C. A) 2 

- -  C 2 ( A ' B ) 2 + A 2 B 2 C  z (12) 

which is valid for any three vectors A, B, C. From this we can establish that 

.[2 = _ 2 v v , v , , + v 2  +v,2 +v,,z _ 1 (13) 

This fixes the magnitude of ~,, once we know v, v', and v", but we are still 
free to choose the sign of y, and this will prove to be important. 
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4. ZS-STATE FAMILIES 

When the operator in (9) is allowed to act on the initial rest-system 
expansion function 

Cpl =U0J0,0[ ( + )'2b(1) + ( - -  )'2~(1)] (14) 

it generates a new function which has the form 

~p~'~ (15) 

As in previous work, the normalization constant in (15) is not known until 
the operator in (9) is allowed to act again, regenerating the starting function 
together with further functions. Requiring that the matrix representation of 
the operator be symmetrical then fixes the normalization constant. 

In a similar way, the use of the operator in (10) generates the function 

I/2 , ep~ KoVo, l (k 'o )[ ( - - )*Zb(1)+(+) '2c(1)]  (16) 

in which the ~--spin functions have been altered by the operator P" in (10). 
Further action by these operators generates the functions 

cp 2'~ = ( N O/k 2 )(45/4) '/2 x~J2,0[ (k . r )2-k2r2/3]  

•  (17) 

cp ~ = ( N O/k 2 )(45/4)I/2K2jo,2 [ (k-p)2-- k 2f)2/3] 

X [ ( +  ) ' 2 b ( 1 )  + ( - - ) ' 2 c ( 1 ) ]  (18) 

~1,,,2k = ( N o / k  2 )(27/2)I/2KrKojI,I[ (k. r) (k. p ) - k 2 ( r . p ) / 3 ]  

•  (19) 

and many more. 
The operator in (11), acting on the function in (14), generates the 

function 

1/2 . . ~ l [ " k = ( N o / k ) ( 9 / 2 )  G~pJl , l ( lk ' rXp) 

•176 (20) 
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and action by (9) and (10) upon (20) then generates functions resembling 
(15)-(19) but all containing the factor ( i k . r •  

Similar sets of functions can be generated as a result of operations 
upon other starting functions, such as 

e p , 7 = N o ( 3 ) l / 2 K r K o j l , ] ( r ' p ) [ ( - - ) ' 2 b ( 1 ) + ( + ) ' 2 c ( 1 ) ]  (21) 

These include 

~p], ,, k = ( i N o / k  )(27/2) 1/2 Xr2X0 J2,, [(k" r ) ( r .p  ) - (k .p ) r  2//3] 

•  (22) 

q92'2'2k = ( N o / k  2 )(2025/14)]/2K]K2j2,2 

•  (k - r ) (k .p ) ( r .p  )--(k.r)2p2/3 - (k.p)2r2/3 

- ( r ' p ) Z k 2 / 3 + Z k Z r Z p 2 / 9 ] [ ( + ) ~ 2 b ( 1 ) + ( - ) ~ 2 c ( 1 ) ]  (23) 

For each function generated from ~p~ or V17, there will be a correspond- 
ing function generated from r or q%8, defined in Appendix A of III: 

�9 2 = N o ( 1 / 3 ) 1 / Z J o , o [ 3 ( + ) ' 2 b ( 1 ) - - ( - - ) ~ 2 c ( 1 ) ]  (24) 

% 8 : N o K r K o j , , , ( r ' p ) [ 3 ( - - ) * 2 6 ( 1 ) - - ( + ) * 2 c ( 1 ) ]  (25) 

In each case the change in the grouping of spin functions is accompanied by 
a change in the normalization constant, which is multiplied by (1/3) 1/2. 

When the expanded wave function 

d9 = C, tp] + CzeP2 + . - -  + C~ ,~ kept, 0, k + . . .  (26) 

is substituted into the operator relationships (8)-(11), and terms involving 
each function are collected separately, the result is relationships among the 
coefficients. These relationships can be solved to give the higher coefficients 
in terms of lower ones. In particular, we find 

Cl7 = -- 31/2~'C] (27) 

C ~ ' ~  k :_ _ 3 1 / 2 p t C l  (28) 

C o, 1, k = _ 31/2v"C 1 (29) 
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c~,l,k:(9/2)l/2"yC 1 (30) 

C 2'~ : - ( 4 5 / 4 ) ' / 2 [ u  ' 2 -  1/3] C, (31) 

C ~ - ( 4 5 / 4 ) ' / 2 [ ~ / ' z -  1/3] C, (32) 

C~'"zk = _ (27/2) ' /2  [ t,'p" -- I,/3] C, (33) 

C~' 1, k = (27/2) ' /2  [ t , v ' -  t / , /3  ] C 1 (34) 

C~,2,2k=(2025/14)' /2[u~/1/ '-~,2/3-~, '2/3-u"2/3+ 2/9]C, (35) 

with similar reduction equations for C 1 8  and C~ '~ k, and so forth, expressed 
as multiples of C 2. 

Many of the functions, such as (17) and (18), can be seen to have the 
form of Legendre polynomials insofar as their dependence upon a cosine is 
involved. This is reflected in the corresponding coefficients, as shown in (31) 
and (32), where the parameters p' and v" play the role of cosines. Others of 
the set of functions, for example (22) and (23), and the corresponding 
coefficients, (34) and (35), contain what are evidently generalizations of 
Legendre polynomials. Three different cosines are involved, but they are not 
fully independent: when two cosines are close to unity, the third must also 
be fairly close to unity since the three vectors, k, r, and p, are constrained in 
this case to be nearly parallel. 

These functions of three cosines are hyperspherical harmonics in nine 
dimensions, but for a particular kind of expansion in which there are three 
"radial" scalars, the magnitudes of the three vectors. A different system of 
hyperspherical harmonics arises when the variables for the "bowl" expan- 
sion of II are selected. 

5. 4p-STATE FAMILIES 

Within the first 16 rest-system tree functions, there are three quartet 
P-state functions, two having odd parity, 

% : iNo(2/3)'/2x~j,,o( -- )T 4(r ) (36) 

cP4 = iNo(2/3)'/2xojo, l( + ) T 4(p) (37) 

the third having even parity: 

�9 r 4  . X ~9:NolgrKpJ,,,(+) (lr p) ( 3 8 )  
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When the operators in (8)-(10) act on these three functions, the result is two 
separate families of momentum-dependent functions. However, the operator 
in (11), itself having odd parity, couples across between the odd-parity 
family and the even-parity family, joining them into a single system. 

The structure of these families is sufficiently complicated to make 
notational difficulties, and the notational choices that have been made here 
should be considered as very tentative. One function that appears im- 
mediately, when the operators in (9) and (10) are applied to (36) and (37), is 
the following, which has been given a nonldeal name: 

• 0  0, k 3' = ( N o / k ) ( 2 / 3 ) l / Z J o , o ( - ) ~ 4 ( k )  (39) 

Other functions which appear at the same time are 

9 9 2 ' ~  ] (40) 

op ~ = (No /k ) (3 ) I /2X~Jo ,2 ( - )  '" [4(p) (k.p)  -4(k)p2/3] (41) 

The above two are straightforward, but the following three were not 
immediately or easily sorted out: 

cpl3,sl, k = ( N o / k  )(2/5)l/21r 1( q- )r 

• [4 (r) (k. O )+  4(p ) (k - r )+  4 (k) (r. p )] (42) 

~,bl, k = ( NO/k  ) (3/2)1/2 ~rxo J1,1 ( + )" 

)< [4 (r)(k.  p ) 4 (p ) (k . r ) ]  (43) 

~pl3, ~, k = ( N o / k  )( 1/2)l /axrxpjl ,  l( + )~" 

X [4(F) (k-p) -~-4(p) (k - r ) -4 (k)2( r .~ ) ]  (44) 

Among the alternative choices, only these three linear combinations will 
give symmetry to the pertinent matrix elements in the matrix representa- 
tions of the operators in (8)-(10), and the appropriate skew-symmetry to 
the matrix form of the operator in (11). 
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Further operations, particularly with the operator in 

Clapp et al. 

(8), give the 
relatively straightforward functions 

cp3,l,k = ( No/k  )(15)'/z~3%j3,,( + )~ 

• (4(r)[(k.r)(r.p)-(k.p)r2/5] 

- ( r2 /5 ) [4(k ) ( r .p )+4(p) (k . r ) ] )  (45) 

~pl3,3, k = ( No/k  )(15)l/Zxrx3pj,,3( + )~ 

• {4(p)[(k.p)(r .o)--(k .r)p2/5] 

-(p2/5)[4(k)(r.p)+4(r)(k.p)]) (46) 

However, they also give the three difficult functions 

Cp2;2, k ( N o / k  W2 2 2. 7 = )(15/2) Kr%J2,2(- ) 

X 4 (k)[ (r.p)2--rEp2/3] (47) 

ep~g2, k = (No/k  )(15/2)l/2K2rfC20J2,2(_ )7 

X [4(r)(k.p)(r.p)--4(p)(k. r)(r.p)] (48) 

cp2~, k = ( No/k  )(135/14)l/Zrz~zj2,2 (_  )7 

X {4(r)[(k.p )(r.p)-- (k-r)(2p2/3)] 

+ 4(p )[ ( k - r ) ( r - p ) - ( k ' p  )(2r2/3)] 

- ( 2 / 3 )  4 ( k ) [ ( r . p ) 2 - 2 r 2 p 2 / 3 ] }  (49) 

The difficulty lies in discovering the correct linear combinations to use, 
which will symmetrize the matrix versions of the operators. In particular, 
comparison of (47) with (42) discloses a distinct difference in character. 
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Examples of other functions in this same family are 

cp4,2,~ : ( No/k )(525/8)1/zK4xzpJ4,2(- )~ 

• {4(r)[(k.r)(r .p)2-(k.p)(r.p)(2r2/V)-(k.r)(r2p2/7)] 

- (2 /7)  4(p)[(k.r)(r .p)rZ-(k.p)r4/5] 

--(1/7) 4(k)[(r.p)2r2-r402/5]) (50) 

r 1,2~ : ( iNo/k 2 )(525/8)l/2x4Koj4,, ( + ), 

• {4(r)[(k .r)Z(r .p)-(k .r)(k .p)(2r2/7)-(r .p)(k2r2/7)]  

- (2 /7)  4(k)[(k.r)(r .p)r2-(k.p)r4/5] 

-- (1/7) 4(p)[(k.r)2r2-k2r4/5]) (51) 

cp~'~ ] (52) 

�9 ~ (53) 

• (4(k)[(k .r)(r .p)-(k .p)r2/3]  

-- ( 1 / 3 )  [4 (r) (r .p)k  2 - 4 ( 0  )k2r2/3] ) (54) 

epiC,2 k (iNo/k 2 1/2 2. : )(27/2) KrlCoJl,2(-- ) 

X (4(k)[(k.p)(r.p)-(k.r)p2/3] 

-(1/3)[4(p )(r.p )k 2 -4(r)k2p2/3] ) (55) 

~,~,~ = ( i N o / ~  2 ) ( 1 0 ) ~ / 2 ~ .  j2, ~ ( + )~ 

X (4(r)[(k .r)(k .p)-(r .p)k2/2]-4(p)[(k .r)2--k2r2/2] 

+ (I/2) 4(k)[ (k" r) ( r-p)-(k-p )r 2] } (56) 
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r : (iN 0 /k  2 )(10)'/2Krlr J l ,2(-  )v 

• (4 (p ) [ ( k . r ) ( k .p ) - ( r .p )k2 /2] - ' ( r ) [ ( k .p )2 -k2p2 /2]  

+ (1/2)4(k)[(k.p)(r .p)-(k.r)p2])  (57) 

q02 1,2k 3'c = ( i N o / g  

• (4(r)[ (k- r) (k- p) - (r-p)k2/5] + (1/2) 4(p)[ (k. r)2_ k2r 2/5] 

- ( 2 / 5 )  4(k)[(k .r)(r .p)+(k.p)r2/2]}  (58) 

q~l 2,2k 3'; = ( iNo/k 2 ) (50/7)  

• (4( p )[ (k. r) (k. p )--(r .p ) k 2/5] + (1/2) 4(r) [(k. p )2_ k 2p2/5 ] 

- ( 2 / 5 )  4(k) [(k-p) (r-p) + (k-r)p2/2]) (59) 

r l, 3k--(N0/k 3 )(15)l/21r _.}_ )~ 

• (4(k) [(k" r)(k.p)-- (r-p)k2/5] 

_ (k2/5) [4(r) (k. p) + 4(p)(k. r)] } (60) 

In addition to the odd-parity 4p family given above, there is an 
even-parity 4p family growing out of the function r in (38). The first two 
momentum-dependent functions in this family are the very simple ones: 

~19'O'k : ( iNo/k )x , j , ,o ( -  )r ik•  (61) 

op ~ : ( iNo / k  )xpjo,,( + )~" 4( ikX p ) (62) 

Sorting out the next functions proved a difficult task, but eventually led to: 

ep2,,,k = (iNo/k)(9/2),/zx,%j2,1k~_)2 - z , ,r [4 ( ik •215  ] 

(63) 

rL',k=OUo/k)(6)'/2 K,%J2,1(+) ~ 

•215215215  (64) 
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q~lg~'k: ( iN o / k  )(9/2)1/2Xrtc2jt,2 ( -- )~[4( i k X p  ) ( r .p  ) 4( i k •  r)p2/3] 

(65) 

q)9,az, k : ( iNo / k  ) ( 6) l /Zxr tCZ Jl,2( _ )r 

•215215 (66) 

Moving in this same direction, the next functions in this family are 

~p3,2, k = ( i N o / k  )(75/4)l /gx~xzj3 ( _ )~ 9s ,2 

X {4(ikXr)[(r.p)2-r2p2/5]- '( ik• (67) 

+g2, ~ = ( iUo/k  ) ( 7 5 / 2 ) ' / % ~  j~,=( - )~ 

• {4(ir• 

+ ( l / 2 ) ' ( ~ k • 2 1 5  

(68) 

2 3 k - -  ' 4 1/2 Z 3. )~ +9;" -(,No~k)(75~ ) ~r~p2,3(+ 

• 2 1 5  (69) 

2 , 3 , k - -  - 1/2 2 3 �9 ) r  +9a - ( l N o / k  )(75/2) KrKpJ2,3( + 

X { 4 ( i r X p ) [ ( k . p ) ( r . p ) - ( k . r ) p 2 / 5 ]  

--(l/2) 4(ik• +,(ikXr)(r.p)(2pZ/5 ) } 

(70) 

Functions with quadratic dependence upon momentum include the 
very simple pair 

cp~ '~ : ( N o / k ~ ) ( 5 ) ' / 2 x z r j 2 , o ( - ) ' 4 ( i k •  (71) 

~p~ (72) 
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and the somewhat more complicated linear combinations: 

cp~l,2k : (N0/k2)(3/2)l/2Krl%Jl, t(  + f" [4(i k • r) (k. p ) +  4 ( ikXp ) (k- r)] 

(73) 

~p19~'zk = ( N O/k 2 ) (9 /2)  1/2Kr 1r p Jl, 1( "3V )r 

• 2 1 5 2 1 5  (74) 

The system of functions is, of course, endless. However, we will actually 
need to use only a relatively small number of these functions, at least in the 
calculations needed for the identification of particlelike trilocal structures. 

When the auxiliary operator equations (8)-(10) are appfied to the part 
of the wave function containing these 4p functions, we are able to solve for 
the coefficients of these functions, in terms of a few leading coefficients. 
These leading coefficients will include C3, C4, and C9, the coefficients 
belonging to the functions (36)-(38). Also, at this stage, they will include 
C3 ~176 C19 '~ and C ~ belonging to (39) and (61), (62), but at a later 
stage we will express the latter three in terms of the former three, with the 
aid of (11). 

For the functions (40)-(44), the coefficients are 

C2'~ + (1/3)C~176 k] 

C0'2'k=(9/2)1/2[ /'C3 + (1/3)C~176 

(75) 

(76) 

(77) 

C~b~,k = (3/2)[  v"C3 - v'C4 ] (78) 

C~3"k=(3/4)l/Z[v"C3 +v'C 4 +2vC ~176 (79) 

The coefficients for the functions (45)-(49) are found to be 

C3,1, k = (45/2) t /2[(_vu,+v, , /5)C3 + (v , /5 )C  4 _ (v/5)CO,0,k] (80) 

C~ '3,k = ( 4 5 / 2 ) l / 2 [ ( - v v " + V / 5 ) C 4  + ( J / ' / 5 )C  3 - (v/5)C3 ~176 (81) 

C32;2, k = (45/4) ' /2(v 2 _ 1/3)cO,0, k (82) 

C2~ 2'~ = (45/4) 1/2 [ u"C3 - v'C4 ] (83) 
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C32; 2, k = (405/28)1/2[ (_  vv" + 2v'/3)C 3 + ( -- vv' + 2 p " / 3 ) C  4 

- (2 /3  )( p2 _ 1/3 )C3 ~176 (84) 

In the even-parity family, we find that the coefficients to be associated 
with the functions (63)-(74) have the following reduction formulas: 

C92;"k=(9/2)l/2[-j,C~'~ +(1/3)C ~ (85) 

C2~1'1r 'O'k +(1/2)C O'l'k] (86) 

C~;2'~:(9/2)l/2[-pC~ + (1/3)C9 l'~ (87) 

C~ae'k:(6)'/z[-v"C 9 +(t'/2)cO'l'k--(1/2)C~ '~ (88) 

C~;2'1':(75/4)~/2[(~,2-1/5)C~'~ ~ (89) 

C3~2,~ :(75/2)'/2[ (ui,'--1,"/5)C9 + (1/2)(~,2 -1 /5  )C~ ,~ 

- (2~/5)C ~ ] (90) 

C2;3'k:(V5/4)'/2[(v2--1/5)C~176 (91) 

C92a 3, k = (75/2)1/2[ (pU,,__ p , /5 )C  9 __ (1/2)(1'  2 -- 1/5)C9 ~ 1, k 

+ (2~,/5)C9 l'~ ] (92) 

C92'~ = (5)1/2j,'C91'~ (93) 

C ~ = (5)'/21,"C ~  (94) 

Cr '~ +~,'C ~ (95) 

C~Al'2k:(9/Z)l/z[u"C~'~ ~ + (2/3)C9] (96) 

We can see that the formulas for the coefficients (85)-(96) are trans- 
literations of the formulas for the functions (63)-(74), in which we have 
made the replacements 

4(ir• ' ( i k •  '~ 4 ( i k •  ~ (97) 

( r . p ) ~  --v, (k-r)-~ iv', (k-o)  ~ ip" (98) 

k 2 ~ + 1, r 2 ~ -- 1, /9 2 ~ - -  1 (99) 



534 Clapp et al. 

Other quantities in the functional formulas are replaced by unity, except 
that the numerical coefficients, the numerical normalization factors, and the 
factor i when it appears, are left unchanged. In a similar way, the coeffi- 
cients in (75)-(84) are transliterations of the functions in (40)-(49), using 
(98) and (99) and the further replacements: 

4(k)~(3/2)l/2C~176 

4 ( r )  ~ --i(3/2)1/2C3 

4 ( p )  .__> _i(3/2)1/2C4 (lOO) 

The formulas for the coefficients were obtained from the operator 
equations (8)-(10). We still have (11) to make use of. This couples together 
the odd-parity and even-parity functions. Operations upon the leading 
odd-parity 4p functions lead to the results 

(P~/kx~K o ) ( ik .  Vr • V o )eP3 = (2/27)'/2tp~ k 

1/2 21 k 2 1 k  + (1/27) (P9s' + (1/3)qP9a ' 

(101) 

(P'/kr~:p)(ik.  Vr • Vp )% = - ( 2 / 2 7 ) 1 / 2 ~  'O'k 

1/2 1 2 k  - ( 1 / 2 7 )  ~ 9 ~ ' - ( 1 / 3 ) ( P ~  2'~ 

(102) 

( P~/kxrr o ) ( ik .  Vr • V 0 )cP ~176 = (2/27)1/2ep9 + (4/27)I/2CP~ '2k 

(103) 

Similar operations upon the leading even-parity 4p functions give 

(P'/kxr~ o )( ik-  Vr • Vp )% = --(2/27)1/2q9 ~176 

_ (1/27)1/2cp2,o, ~ _ (1/27)1/2cpo,2, k 

+ (2/27)1/2cp2~ 2' k - (14/135)l/2cpz~z' k 

(104) 
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( P ' / k r , r  o ) ( i k - V , •  V o ) r k = (2/27) '/2r 

+ (1/27)'/2r _ (t/27)1/Zepo, 1,2k 

, . . . .  ,,/2 212k _(1/10)'/2cp2~,,2~ 
- t l / ~ )  r ' 
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(105) 

C2;"2k=(9/2)[(1,~,'--1,"/3)C~176 -- (1/9)C4] (107) 

C~; T M  = (9/2)[(p1,"--t,'/3)C ~176 + (1,/3)C 4 - (1/9)C3] (108) 

C~"2~=(15)'/2[(-~'~"+~/2)C3 + ( ~ ' 2 -  1/2)C. 

+ (1/2 )( vv ' -  v" )C ~176 (109) 

C~i.2.2k = ( l S ) ' /2[ ( -  v' v" + v /2  )C4 +(v"2-1 /2 )C3  

+(1/2)(ul,"-u')C ~176 (110) 

As mentioned earlier, the operator in (101)-(106) is skew symmetric. 
Inspection of the first matrix element on the right of each of these six 
equations will provide illustrations of the sign changes. When the operator 
relationships are replaced by relations among coefficients, this skew symme- 
try needs to be allowed for. It is most convenient to put the sign change on 
the left of the equals sign, giving six relations, of which the first is 

y C  3 = (2/27)1/2C~ ~ + (1/27)1/2C~;1' k + (1 /3)  C92~ 1, k 

=(2/3)1/2[- l , 'C9-PC~,  ~ +C~ ~] (111) 

The functions ~019 and r which appear above, are defined in Appendix A 
of III, and the coefficients C19 and C20, which will be needed in what 
follows, were given in Appendix E of III. We will also need the following 
four coefficients: 

( P~JkK~xp )(ik" Vr • V p )oF ~ = - (2/27)1/z% 

- (1/27)'/2r + (1/27)l/zcp~ ,~ 

1/2 1 2 2k + ( 1 / 5 4 )  %'~' +(1/lo)l/2~Ol'b2'2k 
(106) 
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These six equations, after substitution from the appropriate reduction 
equations, take the form of six linear homogeneous equations in six un- 
knowns. Because of redundancies, it is not possible to solve for five 
unknowns in terms of the sixth, but it is possible to solve for three in terms 
of the other three. There is a secular equation that needs to be satisfied, but 
it is identical with (13) and therefore has already been satisfied as a result of 
algebraic relationships that hold among the operators that appear in (8)-(11). 

The three new reduction equations are 

C~176 +(vv'-v")C4-(2/3)W2"yCg] (112) 

C~'~ (113) 

c~ (114) 

With these three now available, all of the higher 4p momentum-dependent 
coefficients can be reduced to linear combinations of the three rest-system 
coefficients C 3, C a, and C 9. The parameters v, v', v", and ,/will all appear, 
of course, and magnitudes for these parameters will need to be determined 
as a part of a trilocal solution, but the infinite matrix equations that would 
otherwise need to be solved are by this procedure reduced to finite matrix 
equations. For the 4p families, only these three expansion coefficients 
remain, at this stage, independently adjustable. 

6. 2p-STATE FAMILIES 

The doublet P-state families can be set up in direct analogy with the 
quartet P-state families in the previous section. Note first the rest-system 
functions having the following definitions: 

r =iNox~Jl,o[(+), 2b (r) + ( - - ) r  2C(r)] (115) 

q~7=iNoxpJo, l[(_),2b(p)+( + )~2c(p)] (116) 

q~,a=No(3/2)t/2Krxoyl,,[(--)*2b(irXp)+(+ )*2C(irXp)] (117) 

Introduce now a momentum-dependent trio of functions: 

cp ~176 =(No/k )jo,o[( + )'2b(k)+ ( - ) ' 2~ (k ) ]  (118) 

~p'f3~ (119) 

r176 )(3/2)'/2tcpJo,,[(--)'2b(ikXp)+( + )'2~(ikXp)] (120) 
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The substitutions which will change the 4p functions in (36)-(39), (61), and 
(62) into the 2p functions in (115)-(120) can now be used to change any of 
the 4p functions in the previous section into analogous 2p functions in the 
new family. 

When the analogy is followed further, we find that the coefficients of 
these families of 2p functions can be expressed as multiples of the three 
leading coefficients, C 5, C 7, and C13. 

In addition to the above pair of families, there is a parallel system 
which starts from the rest-system functions: 

�9 6 =iNo(1/3)'/zxrJl,o[3(+)~Zb(r)--(--)~ZC(r)] (121) 

cP8 =iNo(1/3),/2xojo, l[3(_),2b(p) _ (.+.)TZC(p)] (122) 

~P14=No(1/2)l/Zxrxoj,.,[3(--)~zb(ir• + )~eC(ir• (123) 

The leading momentum-dependent functions in this system are 

~p~176 No/k )(1/3)l/2jo,o[3( + ) 'eb(k)--(-- )'2~(k)] (124) 

~p],4o, k = (iNo/k)(1/2)'/2XrJl,o[3( + )~ 2b ( ik  •  -- ( - - )  ~ 2~(ik• r)] 

(125) 

epo,41, k = ( iNo/k )(1/2)'/z~ojo,,[3(-- )~2b ( i k •  ( + ) ~ 2 ~ ( i k •  ] 

(126) 

Again, with appropriate substitutions each of the 4p functions in the 
previous section can be used for the generation of a corresponding function 
in the above system of Zp functions. For these families, the coefficients can 
be expressed as multiples of the three leading coefficients, C6, C8, and C~4. 

There is therefore no need to repeat the algebra for these 2p families, 
based on the functions in (115)-(126). It is the same algebra as used for the 
4p families in the previous section. 

The function translations which will take us from % to %, from 9~4 to 
epT, and from ~o,o,~ to r o,k can be summarized as 

( + ) ~ 4 ( ) ~ ( 3 / 2 ) l / 2 [ ( T ) ~ 2 b (  ) +  (+ )~2c ( ) ]  (127) 

where the vector in the open parentheses is whatever vector is involved in 
the translation. This same translation (127) can also be used with the 
even-parity functions, and will take us from ~09 to ~913 , from r k to f/911'30'k, 
and from cp ~ 1, k to cpO~ x' k. 
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Each of the above six translations can be considered as a syllable 
translation within more complicated word translations that are involved 
when functions such as (56) or (70) are converted from 4p functions to 2p 
functions in these families based on (115)-(120). 

Functions in the 2p families based on (121)-(126) can be obtained 
from 4p functions with translations summarized as 

(• )_)(1/2)1/213(~)~2b ( )_ ( •  )] (128) 

which carry ~3 to %, qo 4 to r r to q914 , and so forth. 
The coefficients for the 2p functions can be obtained as transliterations 

of the functions themselves, by a procedure parallel to that used for the 4p 
families, except that instead of the replacements (100) the following replace- 
ments are needed: 

(-7-)~ 2b ( k ) +  ( - )  ~ 2C(k) -~ co,o,  k 

(~ - ) '2b(r )  + ( •  -~ - - iC 5 

(~)~2~(o) + (+-)'2~(o) ~ -ic7 

3( ~ ) ~  2b (k) - ( • 2~ (k) ~ (3)1/2C~176 k 

3 ( ~ ) ~ 2 b ( r )  -- ( •  ~ --i(3)1/2C6 

3(~_) T 2b(p)  _ ( •  ~ _i(3)1/2C8 

Similarly, instead of (97) we will need to use 

(~-)~Zb(ir •  + (• 2C(ir• 

(w)~2b(ik•  + ( •  

(~)~'2b(ikXp) + ( +--)'r2C(ikXp) 

3(W-)'2b(ir• +_)~2C(ir• 

3(W)*2b( ik •  (___)'2C(ik• 

3(w)~ 20 ( i k •  (___) ~ 2C(ik• 

(129) 

(130) 

When the operator in (11) is applied to these 2p functions, relationships 
similar to those with the 4p functions are obtained. In particular, we find 

~(2/3)1/2C13 

-, - i (2/3)1/2C~~ k 

- i(2/3)W2C~j ~ (131) 

---> (2)  1/2C14 

-- i(2) 1/2 C~;~ ~ 

--, -i(2)W2C~ l't' (132) 
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that the reduction equations (112)-(114) have doublet analogs, given by 

C~176 -'l-(1.,p'-l.,")C7--(2/3)l/2yC13] 

] 

+(1,p'-l,")C8-(2/3)l/ZYC14] 

C~,~o, k = (1 _ rE  )-1[  ( 3 / 2  ) l /2y( rC6 _ C 8 )+ ( plff _ p,,, )C14 ] 

CI~ 1, k = ( 1 -  ~, 2 )-1[  (3/2)1/2y( C 6 - p C  8 ) - (pt'" - / / )  C14 ] 

(133) 

(134) 

(135) 

(136) 
(137) 

(138) 

With the use of these reduction equations, all of the 2p coefficients can 
be reduced to linear combinations of six head-of-family coefficients. These 
six are C5, C6, C7, C 8, C13, and C14. In the linear combinations, there is 
involvement of the eigenvalue parameters p, ~,', u", and 7. This involvement 
is very similar to the involvement in the reduction of the 2S and 4p 
coefficients. It is a part of the program by which the infinite expansion will 
be reduced to a finite expansion in terms of 16 unknown head-of-family 
coefficients. 

7 .  4 D - S T A T E  F A M I L I E S  

There are five quartet D-state functions within the first 16 rest-system 
tree functions. Three of these have even parity: 

Cpl o =No(6ll/2KZjz,o(--l'4(rr) (139) 

~,, :No(6  ) l/2K2jo,2 ( -- )'"(010) (140) 

q~,2 : No (9/5)'/2xrxoJ,,1 ( + )~ 4(rp + P r) (141) 

The other two have odd parity: 

�9 1 / 2  2 �9 
cp,5 =tNo(12 ) KrroJ2,1(+l'~4(irr• (142) 

�9 1 / 2  2 - ~ 4  . X cp16 : tNo(12 ) KrKpJl,2(-- ) (lOr p) (143) 
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Operations upon (139)-(141), using the operators in (8)-(10), generate 
a 4D family which includes many momentum-dependent tree functions. 
Some of them contain the grouping in (7), which vanishes identically, so 
that these are to be treated as null functions. This 4D family has even parity. 
Similar operations upon (142) and (143) generate an odd-parity 4D family, 
which includes a few functions containing the grouping in (6). These are 
also to be treated as null functions. 

The even-parity family contains the three leading momentum-dependent 
functions: 

qOll,o o, k = (iN ~  (9/5)1/2 xr J1,0 ( -- )r  4(k r + rk) 

ep~ ~,~ - - ( iNo/k  )(9/5)l/2v;ojo,,( + ) ' 4 (kp+pk)  

cpO,oO,ak=(No/k2 ) , /2.  (6) Jo,o(-) '"(kk) 

Functions linear in the momentum vector include the following: 

z ,,k = (iNo/k)(81/lO)i/Zxzxoj2,1(+) , ~lbs 

X 

~Ib2; k =(  iNo/k )(81/10) l/ZKrx2jl,2(-- )" 

• [4(kO+Ok)(r.o)-4( +rk)oV3] 

21,k=(iNo/k)(24) l /2  2 �9 1(+)" q0 l()b K r Kp J2, 

X [4 (rr) (k- o ) - ( 1 / 2 )  4(rid -1- o r ) ( k -  r) 

- - ( 1 / 4 )  4(kr+ rk) (r- p) + 4(kp+ pk)r2/4] 

~lb~k (iNo/k)(24)x/2 2. , _ ) "  z KrKpJI,2 ~ 

X [4(pp)(k-r) - (1/2) 4(rp+pr)(k-p) 

-- (1/4) a(kp + ok) (r .p) + ' (kr  + rk)02/4] 

qO2,01ck ( iNo/k) (30/7) ' /2  2 �9 ~, ,~ 7-- Kr KOJ2,1~ -t- ) 

X [4(rr)(k-p) + 4(rp+pr)(k-r) 

- (2/5) 4(kr +rk) (r-o) --4(kp+pk)r2/5] 

(144) 

(145) 

(146) 

(147) 

(148) 

(149) 

(150) 

(151) 



X 
+ 

�9
 6 

"-
" 

it,
4 

�9
 

-..
.y 

,.,
, 

+ 
---

---
. 

+ 

+ 
q"

 
,.~

 

O
0

 

..r
 II 

X 
"-

" 

--
--

- 

'-
r 

t~
 

,-'
-"-

 

---
t- 

§ ..B
 

q.
.. 

.-B
 

-t-
 

4 

i 
i 

..r
 

o:
,.,

 

II 
X 

+ 
X 

"-
" 

,..
_.

, 
~ 

,--
--

. 

I 
~"

 
"-,

 
~ 

"6
 

o 

�9
 -1
 

~,
~ 

~.
,. I 

+ 
~ 

-..
-.-

 

--.
..-

 
+ 

'-~
 

q"
- 

~.
. 

+ -.'
-- 

q.
.. 

.-B
 

+ ..B
 

J 

-.e
 II 

I 
x 

~.
. 

+ 

0
",

 

II 
II 

X 
~ 

-}
- 

~ 

t,c
, 

I + 
.6

 

q
-.

 
~

. 

...
...

 
+ 

.4
~ 

..r
 II 

o 

I 
"-

I I -I-
 

II 
I 

X 

-f-
 

~ 
--a

 
�9

 -~
 

+ 

q.
. 

..~
 

-, 
�9

 'B
 

+ 
~ 

�9
 -B
 

"-
i 

+ 
--.

-.-
 

i 
i 



5 4 2  

~],o2, k = (iNo/k)(125/2)1/2/~r3/C2j3,2 ( __ )T 

)< {4(rr)[(k.p)(r.p)--(k.r)p 2] 

+ 4(rp+ pr)[ (k-r ) ( r .p)- (k-p)(2r2/5)]  

- ' (pp)(k.r)(2r2/5)  - (2 /5 )  4(kr +rk) 

• [ ( r - p ) 2  7rZp2/10 ] _4(k p +pk)(r .p)r2/25 } (159) 

ep2b3, k = (iNo/k ) (125/2)1/292K3 J2,3 ( + )r 

• {4(po)[(k.r)(r.o)-(k.o)r2] 

+ 4(rp+ pr)[ (k -p) ( r -p) -  (k. r) (202/5) ] 

- 4(rr) (k.p) (2p2/5) -- (2/5) 4(kp + p k) 

• [(r.p)2-- 7r202/lO] _ 4 (klr.~_ rk) (r-p)02/25 } (160) 

~p~,ol, ~ = ( iNo/k )(315/2)'/2x4goj4,1( + )" 

• {4(rr)[(k.r)(r.p)-(k.p)r2/V]-4(rp+pr)(k.r)r2/7 

- 4 (kr + rk)(r" p)r2/7 + 4(kp+pk)r4/35 } (161) 

fp~,O 4, k = ( iNo /k  )(315/2)l /2x~g 4ojl,4(_ ), 

• {4(pp)[(k.p)(r.p)-(k.r)p2/7]-4(rp+pr)(k.p)pZ//7 

-4(kp  + pk)(r.p )02/7 + 4(kr + rk)04/35 } (162) 

Functions quadratic in the momentum vector include 
2 0 2 k _ _  2 1 / 2  2 -  ~" epa' o' - ( N o / k  )(135/7) Krj2,0(-- ) 

X[4(kr+rk)(k.r)--4(rr)(ZkZ/3)-4(kk)(Zr2/3)] (163) 

0 2 2 k - -  2 1 /2  2 "  ~" ep,~i' - ( N o / k  )(135/7) Xojo,2(- ) 

• [4(kp+pk)(k.p)-4(pp)(2k2/3)-4(kk)(Zp2/3)] (164) 

C l a p p  e t  a l .  
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18) KrKpjl,l(q--)r4(kk)(r.p) (165) 

qOllb]t; 2k : ( N o / k  2 ) (9/2)1/z XrXo Jl,, ( + )" 

• [4 (k r+rk ) ( k .p ) -4 (kp+pk) ( k . r ) ]  (I66) 

~l[o'cZk : ( No /kZ )(g l /14)  WZKrK ojl,I( + )" 

X [4 (kl--~- rk) (k. p) + 4(kp+ pk) (k. r) 

- (2/3)4(rp+pr)k2 - (4/3)4(kk) (r.p)] (167) 

~4b~ : ( No/k  2 )(525/4)'/2x]J4,o( - )" 

)< ( 4(rr)[ (k . r )2-k2r2/7]  -a (kr  +rk)(k .r ) (2r2/7)  

+ 4 (kk) (2r 4/35) } (168) 

r 2 k =(  No/k  2 )(525/4)l/2fc4jo,4( - )r 

>((4(pp)[ (k 'p )2 - -k2p2 /7] -4 (kp+pk) (k 'p ) (2pz /7 )  

+ 4 (kk) (2p4/35) } (169) 

qo]bt;2k : ( N o / k  2 )(675/7)1/2 3%j3,1( + )T 

)< (4 ( k r+rk ) [ ( k . r ) ( r . p ) - ( k . p ) r2 /5 ]  

-4(kp+pk)(k-r)r2/5-4(kk)(r .p)(2r2/5)  

-- (2/3)[4(rr)(r.p)kZ-4(rp+pr)k2r2/5]} (170) 

cpl 3 , 2 k  2 1 / 2  3 - 'r ,~s = ( N o / k  )(675/7) ~r ) 

)< ( 4 ( k p + p k ) [ ( k . p ) ( r . p ) - ( k . r ) p 2 / 5 ]  

-4(kr+rk)(k.p )p2/5 - 4(kk)(r. p )(2p2/5) 

-(2/3)[4(pp)(r.p)k2-4(rp+pr)k2p2/5]) (171) 
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~)],o~2k = ( No /k2 )(3375 /56) l/2r, xpj2,2t_ 2. / ~ 

X (4(rr)[(k.p)2-k2p2/3]-4(pp)[(k.r)2-k2r2/3] 

- (2/5) 4(kr + rk) (k-p) (r-p) 

+ (2/5) 4(kp + p k) (k-r) (r-p)) (177) 

99~b2g 2~ = ( No/k 2 )(45/2 )1/2x~x~ Je,2(- )~ 

• [4(kr+rk)(k .p)(r .p)-a(kp+ok)(k .r)(r .p)]  (178) 

q02 2,2k 1~c = (  2 i/2 2 2-  )-  No/k )(6075/98) K,~pj2,2(- 

• {4(kr+rk)[(k.p)(r .p)-(k.r)(2p2/3)] 

+ 4(kp+ pk)[ (k - r ) ( r -o ) -  (k-p) (2r 2/3)] 

_ (2kZ/3)[4(ro+ lot)([, p ) .  4(IT)(202/3)_4(pp) (2r 2/3)] 

--(4/3) 4(kk)[(r.p)2--2r2p2/3]) (179) 

2,2,2k_ 2 1/2 2 2 �9 _ r OPlOd - - (No/k  )(125/6) ~r%J2,2( ) 

• {4(rp+pr)[(k .r)(k .o)-(r .p)k2/7]  

+ (1/2) 4(rr)[(k-p)2-k202/7] 

+ (1/2) ' (pp) [  (k.r) 2 -  k2r2/7] 

--(2/7) 4(kr +rk)[ (k.p )(r.o ) + (k.r)p2/2] 

- ( 2 / 7 )  4(kp+ ok)[ (k. r) (r. p) + (k-p)r 2/2] 

+(4/35)  '(kk) [(r.p)2 + r202/2] } (180) 

In addition to the last five functions, there is a sixth combination of 
terms which appears in the results of algebraic manipulations. This is the 
null combination given earlier in (7). This combination can be treated as 
though it were an expansion function, and then declared as a null function 
at the appropriate moment. 
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A few of the functions that are cubic in the momentum vector win also 
be listed here: 

~o,3k = ( iN ~ )( 30)1/% J, ,o(-  )~ 

X [4(kk)(k. r ) -  ' (kr + rk)k2//5] 

r = (iNo/k 3 )(30)'/2%7o,1(+ )~ 

X [4(kk)(k.p)-4(kp+pk)k2/5]  

~]bo, 3k = ( i N o / k  3 ) (875/8)~/zg~A,o ( - )" 

• (4(kr+rk)[(k.r)Z-k2r2/25] 

-4(rr)(k'r)(4k2/5)-4(kk)(k'r)(4r2/5) } 

= (iSo/g 

• {4(kp + pk) [(k. p )2 -  k 2p2//25] 

-4(O0)(kO)(gk2/5)-4(kk)(k'p)(4pV5)) 

~oEbl'3k = ( iNo/k 3 )(135)1/2~2%j2,1( + )~ 

• (4(kk) [(k. r)(r .p)--  (k.p)r  2//3] 

- 4(kr + rk) (r. p ) k2/5 + 4(kp +pk)kEr 2/15 ) 

rp~b2; 3k = (iN o /k  3 )(135)1/2K,r2jl,2 ( - )~ 

• (4(kk) [(k.p) (r- p ) -  (k- r)p2/3] 

_4 (kp + pk )(r-p )k 2//5 + 4(kr + rk)k 2p2//15 } 

~~ 3k = ( iNo//k3 )(75/2)l/2xE%j2, l( + )~ 

• (4(kk)[(k . r ) ( r -p)-  (k-p)r 2] 

+ 4(kr+rk)[ (k . r ) (k -p ) - ( r . p  )(2k2//5)] 

(181) 

(182) 

(183) 

(184) 

(185) 

(186) 
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-- 4(kp + ok)[ (k'r)  2 -  2k2r2/5] 

-4(rr)(k'p)(2k2/5)+4(ro+or)(k'r)k2/5} (187) 

cp]bzg 3k= ( iNo/k 3 )(75 /2)'/2xrK2oj,,2(- )" 

• {4(kk) [(k" p)(r. p ) -  (k" r)p2] 

+ 4(kp + ok)[ (k - r ) (k -p ) -  (r 'o)(2k2/5)]  

- 4 (kr + rk)[ (k- O )2_ 2k202/5] 

-4(pp)(k.r)(2k2/5)+4(rp+pr)(k'o)k2/5} (188) 

q02~)lc '3k (iNo/k3)(125/21 '/22 " l(+)" z Igr/r J2,  

X (4(kr+rk)[(k.r)(k.p)-(r.p)k2/25] 

+(1/2) 4(ko+ok)[(k.r)2-~2r2/25] 
- (2/5) 4(IT) ( k ' p ) k 2  -- (2/5) '(rp+pr)(k.r)k 2 

--(4/5) 4(kk)[(k.r)(r.o)+(k.p)r2/2]} (189) 

qo',b2g 3k = (iN o/k 3)(125/2) 1/2~rlg2 j l  ,2 ( --  ) r 

• {4(kp+ok)[(k.r)(k.o)-(r.p)k2/25 ] 

+(1/2)  4(kr+rk)[(k.p)a-kZo2/25] 

- -  (2/5) 4(pO)(k" r)k 2 -- (2/5) 4(rp+pr)(k.o)k2 

--(4/5) 4(kk)[(k.p)(r.p)+(k.r)p2/2]} (190) 

The above are even-parity 4D functions constructed from (139)-(141) 
using the operators in (8)-(10). When we use these same operators on the 
odd-parity 4D functions given in (142) and (143), we generate momentum- 
dependent odd-parity functions, some of which will be listed here. 
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The leading functions are the following six: 

q~'l'5';k=( No/k )(lg/5)l/2r~Kpjl,,( + )~4(irkXp+ipkXr) (191) 

~11'51a k =(No/k)(54/5)l/2x~t%jl,l(+)~4(ikr• (192) 

r k =(No/k)(12)t/ztCZrJz,o(_)~4(irk• (193) 

r ~ = ( No/k )(12)l/2x2jo,2 ( _ )~4( ipk• ) (194) 

q~ll'5~ 2 k = (iN o/k2)(12) '/2x~j 1,o( - )~ 4(ikk • r) (195) 

r = (iNo/k2)(12)l/2~ojo ,l( +)~4(/kk X p) (196) 

Other functions linear in the momentum vector include 

93 1 k 1/2 3 �9 ,'ss' =(No~k)(60) KrxoJ3,,(+)" 

• [4(irk • r) (r. p ) 4 ( i r k •  ipk• (197) 

~ol3k 

X [4( ipkXp )(r-p ) 4 (  i r k X p +  ipk• (198) 

~2  2, k = ( S o / k  

• (4(irkXp+ipkXr)(r.p) 

-- (2 /3) [4( i rkXr)p  2 +4(ipkXp)r2]) (199) 

9~],51d k = (No/k )(135/2)'/zx3xpJ3,1( + ) ~ 

• [4(irr Xp) (k-r) + (1/3)  4( i rk•  r) (r-p) 

-- (1/6) 4(irkXp+ipkXr)r2 - (3 /10)4( ikrXp)r2]  (200) 

= ( No /k  ) (135 /Z)  + ), 

• [4( ipr•  (1/3)  4(ipk• 

+ (1/6)  4(irk• -- (3/10) 4(ikl'• O)p 2] (201) 
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2 2 k - -  1 /2  2 2 �9 ' r4  . q),'5d--(No/k)(54) xrKoJ2,2(-) ( l k r •  (202) 

~p2,szg k = ( No/k)  (675/28), /2 X2rtC2j2,2 ( _ ), 

X {4(ilTXp)(k.o)-q-4(iorXo)(k.r ) -  ( 3 / 5 )  4(ikrXp)(r.p) 

+ (1/3)[4(  irk • r)p 2 4 ( i p k •  )r  2] } (203) 

In algebraic operations which generate the terms that appear in (199), 
(202), and (203), there will ordinarily be additional terms expressible as 
some multiple of the expression in (6). As noted earlier, that expression is a 
null quantity, a grouping which is identically zero. For convenience, it can 
be treated as belonging to a fictitious function _2,2, k ~v~5 r ,, which is then declared 
to be a null function. 

In the case of the analogous null combination in (7), that grouping 
could have been treated as a factor in a fictitious expansion function qozb2~ 2~ 
which used terms appearing in (176)-(180). That fictitious function could 
have been used in the algebraic sorting of terms, and then declared as a null 
function. 

Further odd-parity 4D functions, depending linearly on the momentum 
vector k, are the following: 

@,s2;k=(No/k)(525/2)'/2 4 2. z ,.t IgrgoJ4,2~- ) 

X (4(irkXr)[(r.p)2-r2p2/7] 

- -  (2 /7)  4(irk•215 + (2/35)  4(ipkXp)r4} 

(204) 

2,4 k - -  I / 2  2 4 - eplss'--(No~k)(525~2) ?irlCpJ2,4(-- ) 

• {4(ipk• 

-- (2/7) 4 ( i rk •  ipk X r)(r .p)p2 + (2/35)  4(irk)< r)p 4 } (205) 

1 /2  3 3 .  z ,  \ r  ep]'s3,'k =( No/k  )(875/4 ) IgrlCpJ3,3t-t- ) 

X {4(irkXp+ipkXr)[(r.p)2-r2p2/25] 

--(4/5)[4(irk)<r)(r.p)p a +4(ipk• (206) 
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4 2  k - -  I / 2  4 2 �9 ) , r  cp l ' 5 ; - (No /k ) (945 /2 )  XrK#J4,2(- -  

• ( 4 ( i r rXp ) [ ( k . r ) ( r . p ) - ( k . p ) r2 /7 ]  

+ ( 1 / 3 )  4(irkXr)[(r .p)2-r:p2/7] 

- (3/14)  4( ikrXp)(r .p)ra  - (1 /6)  4( i rkXp+ipkXr ) ( r .p ) r2  

--(1/7)  4( iprXp)(k .r)ra +(1/21)  4 ( ipkXp)r  4 ) (207) 

~pz4,k=(No/k)(945/2)l /2 2 4. ~ )~ 1'5a IgrK #J2,4~ --  

X {4( iprXp)[(k .p) (r .p) - - (k . r )p2/7]  

- - ( I / 3 )  4(ipkXp)[(r.p)2--r2p2/7] 

- - (3 /14)  4(ikr•  + (1/6)  4( irk•215 

- (1 /7)  4(irrXp)(k.p)p2 -- (1/21)  4(irk X r)p4) (208) 

rp] ~3d ~ = (N  o /k ) (945/4)  1/2 x~ax~ ja,3 ( + )r 

X4( ikr • p )[ (r.p)Z--rZp2/5] (209) 

op3 3 k _ t No/k  )(875/4)'/2K~x~j3,3( + ) �9 

X (4 ( i r rXp)[ (k .p ) ( r .p ) - ( k . r ) (2p2 /5 ) ]  

+ 4 ( i p r •  

- ( 3 / 5 )  4(ikrXp)[(r .p)a-2r2p2/5]  

+(1 /5 ) [4 ( i rk •  (210) 

For convenience in algebraic manipulations, it may be appropriate here to 
define a fictitious function epiC3; k which will contain as a factor the expres- 
sion in (6), multiplied by the further factor (r. p). This function, analogous 
to q~]~2 c k discussed above, is then declared as a null function after it has been 
utilized to facilitate the sorting of the terms which appear in (206), (209), 
and (210). 
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Functions quadratic in the momentum vector include the following: 

qO]~ 0,2k : ( i N  o / k  2 )(75)1/23j3,o ( - )~ 

X [4(irk X r ) (k- r ) -  4 (ikkXr)r2/5] (211) 

0po,53, 2k : ( iUo/k  2 ) (75)'/2K3 jo,3 ( + )~ 

X [4 ( ipkXp)(k .p )4( ikkX p)p2/5] (212) 

q~z'51s'2k : ( iNo/k2 )(75/7)'/2X2rpjz, 1( + )~ 

X [4(irk X r)(k-p) + 4(irkX O+ iok • r) (k- r) 

- (2/5) 4(ikkX r)(r.p) - (1/5) 4(ikk X O)r2] (213) 

cp]'s2; 2k = (iN o / k  2 )(75/7) I/2/r ( - -  )" 

X [ 4 ( i o k X p  ) (k" r) + 4(irkX O+ i p k X r ) ( k . p  ) 

- ( 2 / 5 )  4 ( i k k X p ) ( r . p ) -  (1/5)4(ikkX r)p 2] (214) 
p2 i 2tc ,'Sa' : ( iNo/kz  )(540/7)l/2xzroj2,1( + )~ 

X ( 4 ( i k r X p ) ( k . r ) + ( 2 / 3 )  4(irkXr)(k-p) 

--(1/3)[4( irkX p+/ok Xr)(k.r) 

4 ( i k k X r ) ( r . p  )+ 4( ikkXp )r 2] } (215) 

qg]'sZa 2k : ( iN o / k  2 )(540/7)'/2Krrzjl,2 ( - )~ 

X (4( ikrXp)(k-p)- (2 /3)  4(ipkXp)(k.r) 

+ (1/3)[4(irk X p + i p k X r ) ( k . p  ) 

_4( ikkX p )(r-o )+ 4( ikkXr)oZ] } (216) 

2,1 2 k -  �9 2 , ) r  ~PlSb' - - ( ' N o / k  )(480/7)'/ZKZ~pJ2 1( + 

X [4(irk• r) (k.p) - (1/2) 4(irk• p+ipk • r) (k.r) 

- ( 1 / 4 )  4( ikk • r ) ( r .p )  +4(ikk• 
(217) 
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cpll,5~ 2 k (iNo//k2)(480//7)l/ ' '  2 . , , ,  = xr~oj l ,2 t -  ) 

X [ 4 ( i p k X p ) ( k . r ) -  ( 1 / / e ) 4 ( i r k X p + i p k X r ) ( k . p )  

-- (1/ /4)  4 ( i kk  X p )  ( r . p )  - q - 4 ( i k k X r ) p 2 / / / n - 4 ( i l ~ r X p ) k 2 / / 2 ]  

(218) 

,~ ,,~,, (~Uo/~2)(s4)'/2,,h,.j2.,( + )" 1'5c 

X [ 4 ( i k k X r ) ( r . p ) 4 ( i k k X p ) r 2 / / 3 ]  (219) 

qol'sZd 2k = (iN o / k  2 )(54)l/2KrK;jl,2 ( __  ), 

• [ 4 ( i k k • 2 1 5  (220) 

A few of the functions cubic in the momentum vector are 

r /k3"~i75"~l /2K2;  [ _ ~ *  15 --  I o ~  ] \  1 r J2,0\ ] 

X [4(ikk X r ) ( k - r ) - 4 (  irk X r)k 2//5] 

~0,2,3~ : , 5  ( No/~3 )(75),/2~b0,d_ y 

~1,1,3k 
15s 

(221 ) 

~01, 1, 3k 
15a 

X[4(ikkXp)(k.p)--4(ipkXp)k2//5] (222) 

( No//k 3 )(45//2)l/2xrrpjl,l( + )~ 

X [4(ikkXr)(k.p )+ 4( ikkXp )(k.r) 

4( irkX p+ ipkXr)k2//5] (223) 

(N0/k 3)(4s)'/%~j,,,(+)" 

X [4(ikkXr)(k.p) - 4(ikkXp)(k.r) 

..~ 4( ikr Xp )(3k2/5)] (224) 

There are, of course, many more functions (infinitely many more). 
They can be generated as needed with the aid of the operators in (8)-(10), 
though in some cases considerable trial and error is needed before the 
generated terms can be correctly sorted into correct functions. Correct 
functions are those that make the matrix representations of these operators 
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symmetric, while making the matrix representation of the operator in (11) 
skew symmetric. What we have given here are the earlier functions in what 
can be recognized as families and subfamilies, whose orderliness suggests 
that generalized formulas for the families must exist, similar to the gener- 
alized formulas in III, though we have not found those formulas as yet. 

We have, however, found procedures for transliterating from the func- 
tions to the coefficients. These procedures were illustrated earlier, as they 
applied to the :S, 4p, and 2p functions and coefficients. With respect to the 
4D families, the added transliteration formulas are, for even-parity func- 
tions, 

'(rr) ~(1/6)1/2 Cio 

4(00) ~(1/6)1/2 CI1 

4(rpWpr) --~(5/9)1/2C12 

4 (kr ~- rk) -~ -i(5/9)1/2C~6~ k 

4(k p + p k )  ~ _i(5/9)1/2cO61,k 

4(kk) ~(1/6)'/2C~176 (225) 

For the odd-parity 4D functions, we get 

4(ilT• p ) ~  --i(1/12)1/2C15 

4 ( i p r •  -i(1/12)'/ZC,6 

4(irk•215 ~(5/18)1/2C~],k 

4( ikr X p ) --e(5/54)1/2C~1 a' k 

4( irkXr)~(l  /12)l/2c2g~ 

"( ipkXp ) ~(1/12)'/2C~ 2'~ 

4(ikk• p ) ~  -i(1/12)'/2C~ 1'2k (226) 

Other quantities are transliterated as shown in (98) and (99), and in the 
discussion that follows those specifications. 
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Examples of transliterated coefficients for 4D functions are 

c l , l , 2 k  _ _ (3)l/21PcO6O,Zk (227) 10s -- 

C762'1k=(25/2)'/2[-.v"C~6 ~ +.~,'C~ ''k] (228) 

I/2 11~ �9 -',5,r1'3' k -- - (5) 1/2~,C~ 2,k + (2/3)  C 1 ~  s ' (229) 

212k_  9 2 1/2 CiL' - (  / ) [-vC~g ~176 L2~] (230) 

These transliterations arise out of the auxiliary equations (8)-(10). 
There is an interplay between action by the differential operators upon the 
expansion functions and matrix manipulations of the expansion coefficients. 
This interplay is embodied in and summarized by the transliterations. 

Consider now the null functions obtainable from (6) and (7). These 
identities express a lack of full independence among the functions contained 
therein. Yet the transliteration formulas will permit the construction of 
putative expansion coefficients to accompany these null functions (except 
for an uncertainty as to the numerical normalization factors). Each such 
coefficient will be a linear combination of leading coefficients. We can 
tentatively infer that the lack of full independence among the functions 
means a corresponding lack of full independence among the coefficients, 
expressed then by the two null conditions: 

0 = p"C15 - e  . . . .  ~16 --~152'0'k --t .qs'"~ 'k (231) 

0 =  (v ''a - 1)Clo + (p,2 _ 1)Cu - (1 '2 - 1)C~ ~ 

- ( l O / 3 ) l / 2 [ ( v ' 1 , " - v ) C m  + ( l ,p" -  ~')C~6 ~ 

+ ( w ' -  p")C~ 1'/' ] (232) 

The relationships (231) and (232) will be found to be consistent with 
other algebraic conditions, or to follow from other algebraic conditions, 
though here they are just presented as tentative inferences from the trans- 
literation formulas, together with the easily verifiable identities (6) and (7). 
The transliteration formulas themselves were obtained inductively, through 
inspection of the first few dozen coefficients constructed by explicit applica- 
tion of the auxiliary equations (8)-(10). A formal inductive proof of these 
transliteration formulas will be left to the reader. 

These transliteration formulas permit us to write down expressions for 
any of the 4D coefficients, in terms of the leading coefficients, where these 



Trilocal Structures. IV 555 

latter are six in number  for the even-parity family and eight in number  for 
the odd-parity family. The relationships (231) and (232) reduce these 
numbers to five and seven. We will want to reduce the number  of indepen- 
dent leading coefficients still further, through use of the auxiliary condition 
(11) which couples together the even-parity and odd-parity families. 

In analogy with the 4/, relationships in (101)-(106), we can construct, 
for the 4D families, the relationships 

(P~'/kKrKp)(ik" Vr X Vp )r = (1/15)1/2~01'51s' k +(1/45)'/2~'5'~ k 

1/2 3 1,k 1/2 3,1,k + ( 2 / 4 5 )  qol~ ~ + ( 4 / 4 5 )  ~0,5 ~ 

(233) 

(P*/k~rxp)( ik .  Vr • Vp )~11 = - - ( 1 / 1 5 )  1/2~11'51 s k + (1/45)'/2~1'51 ~ k 

_ (2/45)'/2~1133; k + (4/45)'/2rp~33,~ k 

(234) 

( P ' / k . . x . ) ( i k ' V .  • V~, )qo,2 = -  (1/15)' /2~2~ ~ 

+(1/15)t/ZpO,52,k ,/2 22 - - (2 /375)  r l ~ '  

+ (28/375)1/2q0]~, '~ (235) 

(P*/kK~xp)(ik-v~ • Vp )qoiib ~ --(1/15)1/2qo15 

1/2 2 1 2k +(1/15) ' /2rp% ' ' 2k+(7 /1200)  ~1~; 

1/2 2,1,2k 1/2 2 1,2k + ( 7 / 6 0 0 )  ep,Sb + ( 1 / 3 0 )  qO,~ c 

(236) 

( e'r/kKrls )(ik'Vr )< V o )qO~ ' ' k :  (1/15)1/2qo,6 

-- (1/15)'/2qo]f, 2k + (7/1200)l/2eplfsZaZk 

-- (7/600)1/2rpl,52t;2,~ -- (1/30)l/2qO1,52;Zk 

(237) 
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(238) 

( P ' / k K r K  o ) ( i k "  Vr • V o )qols = - (1 /5 ) l /2q~  ~ k 

-- (2 /45 )1 /2  ~]bO, ,~ _ (2 /375 )1 /2  Cpllb2; ,~ 

+ (8 /225 )1 /2  cplb2/k -- (14/1125)'/zqo]b2g k 

+ ( 1 / 1 2 5 ) ' / 2 ~ ] b z ;  k _ (2 /225) l /2ep] ,o~k  

_ (32/375)1/2ep],02/k (239) 

( P ' / k r , x  o ) ( i k .  % • V o )qo,6 = - (1/15)l /2qo~ k 

_ (2 /45 )1 /2  qoob3, k _ (2/375)1/2qo]bl,  k 

+ (8 /225 )1 /2  cpzbk k _ ( 1 4 / 1 1 2 5 ) I / 2  qvzb~ ~ 

+ (1/125) ' /zepZ,o3 ,, k _ (2 /225)1 /2  rpzb~ k 

_ (32/375)l /zq~]b3g k (240)  

( P ' / k ~ r x  o ) ( i k .  % • Vp )qo]i ~ = ( 1 / 1 5 ) 1 / z ~ 1  z 

+ (2/45)1/2~p16 - (1 / 150)l/2qplbl~2k 

-- (7/150)l/2ff,]blg2'~ -- (7/225)l/2q93bls,2k 

- -  ( 4 / 1 5 ) ~ ] ' 0 ~  z~  (241) 

( P ' : / k x r x  o ) ( i k ' V r  • ~7 o )qo~ 2,k = - (1 /15 )1 /2qo12  

- (2/45)1/2q027 - (1/150)l/2qOllbl~2k 

+ (7/150)l/2q~lbl,;2'~ + (7/225)l/2rpab3;zk 

+ (4/15)qV]b3t; 2k (242) 
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", l I,k __ (1/15)t/2CPlO (P/kx,xt, ) ( ik" V r X VO )qgi'Ss : 

+ (1/15)1/z~11 + (7/150)l/z~]b~ 

- -  (7/150)l/2rp~ - (112/1875)1:99~'o~ 2k 

+ (1/25)q0]b~ 2k (243) 

(P'/kxr%)(ik-V~ X V o )~1f51a k = -  (1/45)'/2q~,o 

- (1/45) ' /2ep, ,  - (14/225)1/2~v28 - (4/45)'/2~oobo,2~ 

- (7/450)1/2~01bo,2'~ - (7/450)l/2epob2,2k 

+ (2 /15)  cp]~2s '2k -- (49/1125)l/2q~b2c'Zk (244) 

\ 1 0 2k / . / . ~ ' t l / 2  0, l ,k  
(?~//kKrgo)(ik. VrXVo)~l '  5' --ll/ID) ~10 

. .~_ (1 /30 )1 /2  2~)ls, k 1/2 2 1 k 1/2 0 1 3k - - ( 1 / 5 0 )  tplb~; - ( 2 / 4 5 )  cpl b'  

z . . . .  - ~ 1 / 2 2 1 3 k  (2/25)1/2ep]b~3k (245) 

(P~'/kxd%)(ik'Vr X ~7 o ) ep~ ' ' 2k=  - ( 1 / 1 5 )  1/2q01'00' k 

_ (l/30)l/2r s k q_ (1/50)l/2r k q_ (2/45)l/2~pllbO,3k 

+ (1/45)l/2r + (2/25)l/2q~llb2~3~ (246) 

As noted earlier, the operator on the left of (233)-(246) is skew symmetric,  
and there are many  illustrations of this among the matrix elements on the 
right. Substitution into the eigenvalue equation (11) leads to relationships 
among the expansion coefficients. The relationship that corresponds to 
(233) is 

_ 1 / 2  1 I ,k YClo - (1 /15 )  C~s +(1/45)I/2C~a'k 

1/23,1 ,k  +(2/45)'/2C31~'k+(4/45) C15 a (247) 

and similar relationships can be directly obtained f rom the 13 others. 
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Each of the 14 relationships among coefficients can then be reduced 
through substitutions such as 

C13~1, k , e x l / 2  ..--~2 0 k - -  , , ' ~ / ' ~~1 /2 / -1  1 k (248) = - t ~ )  VCl~' -1-tz/a) t~l~ ~' 

C3,,,k =(45/8)1/2[u,C,5 _ (1/3)1,c28O,~ 
15a 

+(5/54)l/2c~g]'k +(1/lo)l/Zc~gla'k ] (249) 

What results is then the following set of 14 linear homogeneous equations, 
in the 14 leading coefficients: 

YClo=(1/Z)'/Z[. 'Cls--uC2~~ +(5/6)1/2C~] 'k 

+ (5/18)1/2 c ~ l , k  ] (250) 

YCll (1/2)'/2[;,,,C16- . -02k ,~..-,l/2.-., , k = -1-1't.l~ ' - t ~ / o )  c1~ ~' 

+(5/18) ' /2C~'d k] (251) 

7C12=(3/20)'/211""C,5 "~- 1"C16 + (lO/9)'/2vC~'d k 

-C2g~ +c~ 2,k] (252) 

rr . . -~ l /2  t..-,1,1, k YC~6~ + t~/o)  I'1-,15 , 

- (5 /18 ) ' / 21"C~ ,  k - / 'C?~ ~ 

- v C ~  ~ +C~ 1'2~] (253) 

./cOd,,k = (3/20) ' /2[  C ,  6 _ (5 /6)1/2v"C~'~  

/ ~ / ~ o \ 1 / 2  t t~l  1 k - -  t/~O2, k 
- - L 2 ) / / D 5 )  /Y I...,1~ a' T1 'L- . I~  

--C~g ~ + I,C~ 1'28] (254) 

~O 0 2k_  ~. ...'~l/2r r . . . .  ~1/2.-,1 l,k . . . .  1,0,:k ,.-0,1,2kl (255) 
~l..,li j ' - - ~ , I / Z )  [ ~ l O / ~ ' )  L,,I~ a -i"-/] I,.,,15 - -1 '  L, 15 J 

YC,5  -= ( 2 ) 1 / 2 (  - -  1 ' 1 ' " +  1 " ) C 1 o  

+ (5 /3 )1 /2[ (_u#+/ , )C ,2  + (1"2 _ 1)c~dO, k] (256) 
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YC16 = ( 2 ) 1 / 2 (  - vv'+ v")Cll 

+(5//3)l/2[(-vv"+v')C12 W(v2-1)c~ ] (257) 

.yC~2,k = ( 3 / / 5 ) 1 / 2 [  (p,,2 __ 1)C10 _ ( v t 2  __ 1)Cl l ]  

+(1/2) l /2[(-vv"+v')C~6 ~ +(vv'-v")C~ ''k] (258)  

~C~a'~=(3/2)1/2[(~"--~')C~0' ~ + (W--.")cO~1' ~] 

+ (9//5)' /2(v 2 - 1)C~ ~ (259) 

yC?~ ~ : (2)l/2(v'v"-- v)C,o 

+(5 / /3 )1 /2[ ( -v  '2 + 1)C,2 +(vv ' - -v")C~6 ~ (260) 

ycO~ 2, k _-- (2)1/2( _ v 'v"+ v )C11 

+ ( 5 / / 3 ) l / 2 [ ( v " 2 - 1 ) C l z - ( V v " - v ' ) C ~  ] (261) 

�9 y C ~  0,2k = ( 5//3)1/2[ ( v ' v " -  v )C~6 ~ -- ( v '2 -- 1 ,~C ~ j 

+ (2)1/2(-  vv '+ v")C~ ~ (262) 

�9 yCO~ 1, 2k ( 5 / 3 ) , / 2 [ ( . , , 2  _ 1)c~60, k - ( . , . , , - . ) c o ~  1, k] 

+ (2)'/z(vv , , -  v,)cOdo, 2k (263) 

These 14 equations can immediately be used to verify the earlier 
tentative relationships (231) and (232). When the linear combination of 
(256)-(258) and (261), (262) is formed which will give, on its left, the 
grouping in (231), it is found that the result is an equation with exactly zero 
on the fight-hand side of the equals sign. A similar grouping of (250)-(255) 
verifies (232). 

The compatibility of the set of linear homogeneous equations would 
ordinarily depend on the vanishing of a secular determinant. However, in 
this instance no new condition is obtained, just the old condition (13), which 
was already established algebraically. 
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By judicious substitutions, using (231) and (232) and (250)-(263), we 
can construct the following reduction formulas: 

C~6~ 

+ (-- pv'+ l/')C,2 -(3/5)'/2~{C,5] (264) 

C~ ''k = (1 - ~,2 ) - ' [  (6/5) ' /2(  _ ~,~,, + u") C,, 

+(-~,~"+1/)C12-(3/5)1/2yC16] (265) 

C~176 +C,,-(10/3)'/2~,C,2] 

+ ( 1 -  v 2 ) - ' [  (v ''2 - 1 )C,o + (p'2 _ 1 )C,t 

- - (10 /3) ' /2 ( I /# ' - -u  )C,2] 

+ (2)1 /27(1-1 ,2) -2[ ( - .1 / '  + t/)C,5 + ( -~ .u '+  u")C,6 ] 

(266) 

C~] 'k = (1 _ p 2 ) - l [ ( 3 / 5 ) l / 2 . y ( C l  0 _ C11) + ( 3 / l o ) l / 2 ( p p , t _  b,,,)C15 

~- (3 /10)1 /2(  __ plt, ~ - ptt)Cl6] (267) 

C~a.~=(9/5)'/27(1-~,2)-1[C,o +C,,-(10/3)'/2pC,2] 

+ (9/10)t/z(1 -- ~2)-1 [( v~," -- I,')C,5 

+ ( v v ' -  ~/')Cl6 ] (268) 

C2~~ 

+ (--1,~,'+ 1,")C,5 ] (269) 

C~ 'k = (1 -1, 2 ) - ' [ -  (2)'/2v1,C,, + (5/3)'/2vC,z 

+ (.~."-- l.')C,6 ] (270) 

+ (2)'/2 ~,(1-p 2 ) - '  [i/'C,o -(5/6)'/2~'C,2] 
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+ 2(vv'-v")(1-v2)-2[(vv"-v')Cl5 +(vv'-v")C16 ] 

+(1--u2)-l[(--v'v"+v)C,5+(v"2--1)C16] (271) 

cos,,2k 

x [qo 

+(2)'/2-F(1--v2)-'[--v'CH +(5/6)'/2v"C,2] 

+2(--vv"+v')(1--P2) - 2  

x + ( w - r  

+(1-v2)-'[(-v"2+l)C,5+(v'v"-v)C,6] (272) 

With these reduction formulas, we can finally express any 4D coefficient as 
a linear combination of the five leading rest-system coefficients: Cm, C1~, 
C12, C1s, and C16. 

8. DISCUSSION 

In the previous article, III, we described the rest-system functions in 
the tree expansion. Generalized forms were given for those functions, 
permitting the infinite system to be compactly presented. With one auxiliary 
condition, and with one auxiliary parameter, v, it became possible to express 
any expansion coefficient in terms of the first 16, C1, Cz,..., C~6 , as a linear 
combination in which v entered as a parameter. 

In the present article the tree expansion has been extended to include 
the functions which lie outside the rest system. These momentum-dependent 
functions have been individually constructed, and show many familial 
relationships, but we have not been able as yet to find generalized formulas 
which will summarize the members of the families. Clearly what we are 
seeing are generalizations of spherical harmonics, and vector spherical 
harmonics, into a space of higher dimensionality than the space we are 
familiar with. 

While we do not have a generalized Rodrigues formula, we do have the 
functions themselves--enough of them for the immediate needs. We have 
the auxiliary conditions (8)-(11) through which further functions can be 
generated as may be needed at a later time. Furthermore, we have a 
procedure by which the expansion coefficients accompanying these 
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momentum-dependent functions can all be expressed as linear combinations 
of the first 16 rest-system coefficients. There are now four auxiliary eigen- 
values, v, v', v", and y, which enter as parameters in these expressions. 

This permits us (as will be seen in the next article) to replace infinite 
matrix equations by finite sets of coupled equations, linear homogeneous 
equations in 16 unknowns, the 16 leading rest-system coefficients C 1 . . . . .  C16. 
Requiring that these coupled equations be compatible places restrictions on 
the parameters of the system, and in particular on the mass to be associated 
with a trilocal structure. 
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